skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cole, Kevin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work concerns the laser powder bed fusion (LPBF) additive manufacturing process. We developed and implemented a physics-based approach for layerwise control of the thermal history of an LPBF part. Controlling the thermal history of an LPBF part during the process is crucial as it influences critical-to-quality characteristics, such as porosity, solidified microstructure, cracking, surface finish, and geometric integrity, among others. Typically, LPBF processing parameters are optimized through exhaustive empirical build-and-test procedures. However, because thermal history varies with geometry, processing parameters seldom transfer between different part shapes. Furthermore, particularly in complex parts, the thermal history can vary significantly between layers leading to both within-part and between-part variation in properties. In this work, we devised an autonomous physics-based controller to maintain the thermal history within a desired window by optimizing the processing parameters layer by layer. This approach is a form of digital feedforward model predictive control. To demonstrate the approach, five thermal history control strategies were tested on four unique part geometries (20 total parts) made from stainless steel 316L alloy. The layerwise control of the thermal history significantly reduced variations in grain size and improved geometric accuracy and surface finish. This work provides a pathway for rapid, shape-agnostic qualification of LPBF part quality through control of the causal thermal history as opposed to expensive and cumbersome trial-and-error parameter optimization. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. Abstract The long-term goal of this work is to predict and control microstructure evolution in metal additive manufacturing processes. As a step towards this goal, the objective of this paper is the rapid prediction of the microstructure evolution in parts made using the laser powder bed fusion (LPBF) additive manufacturing process. To realize this objective, we developed and applied an approach which combines physics-based thermal modeling with data-driven machine learning to predict two important microstructure-related characteristics in Nickel Alloy 718 LPBF-processed parts: meltpool depth and primary dendritic arm spacing (PDAS). Microstructure characteristics are critical determinants of functional physical properties, e.g., yield strength and fatigue life. Currently, the microstructure of laser powder bed fusion parts is optimized through a cumbersome and costly build-and-characterize empirical approach. This makes the development of rapid and accurate models for predicting microstructure evolution practically valuable: these models reduce process development time and enable fabrication of parts with consistent properties. Unfortunately, due to their computational complexity, existing physics-based models for predicting microstructure evolution are limited to only a few layers and are challenging to scale to practical parts. To overcome the drawbacks of current microstructure prediction techniques, this paper establishes a novel physics and data integrated modeling approach. The approach consists of two steps. First, a rapid, part-level computational thermal model was used to predict the temperature distribution and cooling rate in the entire part before it was printed. Second, the foregoing physics-based thermal history quantifiers were used as inputs to a simple machine learning model (support vector machine) trained to predict the meltpool depth and primary dendritic arm spacing based on empirical materials characterization data. As an example of its efficacy, when tested on a separate set of samples from a different build, the approach predicted the PDAS with root mean squared error ≈ 110 nm. The modeling approach was further able to predict meltpool depth with a root mean squared error of 0.012mm. This model performance was validated through the creation of 21 geometries created under 7 different process parameters. Optical and scanning electron microscopy was conducted resulting in more than 1200 primary dendritic arm spacing and meltpool depth measurements. Primary dendritic arm spacing predictions were also validated on parts of a unique geometry created in a separate work. The model was able to successfully transfer to this build without further training, indicating that this method is transferrable to other parts made with laser powder bed fusion and Nickel Alloy 718. This work thus presents an avenue for future physics-based optimization and control of microstructural evolution in laser powder bed fusion. 
    more » « less
  4. The long-term goal of this work is to predict and control the microstructure evolution in metal additive manufacturing processes. In pursuit of this goal, we developed and applied an approach which combines physics-based thermal modeling with data-driven machine learning to predict two important microstructure-related characteristics, namely, the meltpool depth and primary dendritic arm spacing in Nickel Alloy 718 parts made using the laser powder bed fusion (LPBF) process. Microstructure characteristics are critical determinants of functional physical properties, e.g., yield strength and fatigue life. Currently, the microstructure of LPBF parts is optimized through a cumbersome build-and-characterize empirical approach. Rapid and accurate models for predicting microstructure evolution are therefore valuable to reduce process development time and achieve consistent properties. However, owing to their computational complexity, existing physics-based models for predicting the microstructure evolution are limited to a few layers, and are challenging to scale to practical parts. This paper addresses the aforementioned research gap via a novel physics and data integrated modeling approach. The approach consists of two steps. First, a rapid, part-level computational thermal model was used to predict the temperature distribution and cooling rate in the entire part before it was printed. Second, the foregoing physics-based thermal history quantifiers were used as inputs to a simple machine learning model (support vector machine) trained to predict the meltpool depth and primary dendritic arm spacing based on empirical materials characterization data. As an example of its efficacy, when tested on a separate set of samples from a different build, the approach predicted the primary dendritic arm spacing with root mean squared error ≈ 110 nm. This work thus presents an avenue for future physics-based optimization and control of microstructure evolution in LPBF. 
    more » « less
  5. We developed and applied a model-based feedforward control approach to reduce temperature-induced flaw formation in the laser powder bed fusion (LPBF) additive manufacturing process. The feedforward control is built upon three basic steps. First, the thermal history of the part is rapidly predicted using a mesh-free graph theory model. Second, thermal history metrics are extracted from the model to identify regions of heat buildup, symptomatic of flaw formation. Third, process parameters are changed layer-by-layer based on insights from the thermal model. This technique was validated with two identical build plates (Inconel 718). Parts on the first build plate were made under manufacturer recommended nominal process parameters. Parts on the second build plate were made with model optimized process parameters. Results were validated with in-situ infrared thermography, and materials characterization techniques. Parts produced under controlled processing exhibited superior geometric accuracy and resolution, finer grain size, and increased microhardness. 
    more » « less
  6. Purpose The purpose of this paper is to develop, apply and validate a mesh-free graph theory–based approach for rapid thermal modeling of the directed energy deposition (DED) additive manufacturing (AM) process. Design/methodology/approach In this study, the authors develop a novel mesh-free graph theory–based approach to predict the thermal history of the DED process. Subsequently, the authors validated the graph theory predicted temperature trends using experimental temperature data for DED of titanium alloy parts (Ti-6Al-4V). Temperature trends were tracked by embedding thermocouples in the substrate. The DED process was simulated using the graph theory approach, and the thermal history predictions were validated based on the data from the thermocouples. Findings The temperature trends predicted by the graph theory approach have mean absolute percentage error of approximately 11% and root mean square error of 23°C when compared to the experimental data. Moreover, the graph theory simulation was obtained within 4 min using desktop computing resources, which is less than the build time of 25 min. By comparison, a finite element–based model required 136 min to converge to similar level of error. Research limitations/implications This study uses data from fixed thermocouples when printing thin-wall DED parts. In the future, the authors will incorporate infrared thermal camera data from large parts. Practical implications The DED process is particularly valuable for near-net shape manufacturing, repair and remanufacturing applications. However, DED parts are often afflicted with flaws, such as cracking and distortion. In DED, flaw formation is largely governed by the intensity and spatial distribution of heat in the part during the process, often referred to as the thermal history. Accordingly, fast and accurate thermal models to predict the thermal history are necessary to understand and preclude flaw formation. Originality/value This paper presents a new mesh-free computational thermal modeling approach based on graph theory (network science) and applies it to DED. The approach eschews the tedious and computationally demanding meshing aspect of finite element modeling and allows rapid simulation of the thermal history in additive manufacturing. Although the graph theory has been applied to thermal modeling of laser powder bed fusion (LPBF), there are distinct phenomenological differences between DED and LPBF that necessitate substantial modifications to the graph theory approach. 
    more » « less